Figure 2 shows a computer-calculated plot of log J* against the Stokes number St for poorly conducting par-
ticles in the case of potential flow past a sphere of radius R. Curves 1-3 correspond to Re =10, 102, and 108,
When St =« we have

1
ye=2{ (VT ropea ~ 2
0

Figures 1 and 2 indicate_that there is a critical value of the Stokes number (St, > 0), at which J* becomes
zero. When the Stokes number is less than St the particles do not reach the body surface. In this case J* =0
and there is no electrification of the body.

As an example we consider the electrification of a spherical body of diameter 2R =10 m in an aerosol
flow of ice particles with diameter @ =10~ m, concentration »° = 10® m=3, and flow velocity u® = 100 m/ sec.
For pure ice sp =72, 0p =4 - 1077 @71 . m™1, ¢ =1.6 - 107C, ny & 10%-10* m~3, Ef =3 - 10° N/m?, »p = 0.3.
In this case the inequality 7 2z 107% sec « Te =1.6 - 1073 sec is fulfilled and the theory expounded in Paragraph
4 is applicable. For these numerical values of the parameters we have St =2, Re =103, J* =1071, Ael"3 ==5 -
1078 ¢, J/Sy =5 + 107V A/m?. Such current densities are actually observed when hodies move in clouds and
precipitation [2].
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APPLICATION OF THE MULTIPLE-SCALE METHOD IN THE
PROBLEM OF WAVES ON THE SURFACE OF A LIQUID

V. A. Batishchev and V. V. Trepachev UDC 523.593

Sretenskii [1] has used the method of integral transforms to solve the problem of waves on the surface
of a viscous incompressible liquid of inifinite depth. In the low-viscosity case Potetyunko and Strubshchik [2]
have constructed asymptotic expansions that are valid in finite time intervals.

In this article we consider the planar Cauchy—Poisson problem for the linearized Navier —Stokes equa~
tions in application to the motion of an incompressible low-viscosity liquid under the action of an initial eleva-
tion of the free surface:

av/ot = —Vp 4 e*Av, divv =0,
P=pr+ 2z, v=0,0 =, (2)(t = 0), — p + AL + 2%0,/0z =0 (z =0),

AL18t = v, Bve/3z + Bv,/oz =0 (2 =0), 1)
(v, 8v/oz, p, 8pldz, Ly)—0,|z| = o0,
v=0 (z=—H).

Rostov-on-Don. Translated from Zhurnal Prikladnoi Mekhaniki i Tekhnicheskoi Fiziki, No. 3, pp. 42-44,
May-June, 1982. Original article submitted April 3, 1981.
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All quantities in (1) are dimensionless. Here £2 = 1/ Re is a small parameter; Re, Reynolds number; pr,
hydrodynamic pressure; ¢ (x, t) describes the elevation profile of the free boundary; A = gT?e™}; g, accelera-
tion of gravity; and @, T, units of length and time. The coordinate origin is placed on the undisturbed surface.
The z axis is directed vertically upward. The liquid is set in motion by the initial elevation of the free bound-
ary ¢y .

We construct asymptotic expansions of the solution of problem (1) as £— 0 in the form

- )
v Bt ot wit by, L X e (2)
= =0

An analogous series is constructed for the function p with coefficients py, Ty, qx. In the case of vanishing vis-
cosity, boundary layers are formed near the boundaries of the domain. We denote by Dg and Dy the domains
of the boundary layers near the solid boundary 8 and the free surface I'. Then wy and ry are functions of the
nature of solutions of the boundary-layer problem in Dg, while hy and q; are the same in Dy.

The functions vi and py, which characterize the flow everywhere outside Dg and Dy, are found by the first
iteration process of [3] and are expressed in terms of the scalar function ¢ (x, z, t) according to the formulas
v =grad ¢, Pk =~ 8 ¢k /0%, where ¢k satisfies the Laplace equation Agy =0. We introduce the Fourier trans-
form with respect to the coordinate x and the Laplace transform with respect to the time t:

: 1 itx SR
7% J § — o
O (8, 20) = 7= j: (22, t)da, Lf~0§ fe~*lat,
and we specify two time scales t; and r [4]):

N N
=t B, ) v= B o (t, ). (3)

The principal terms of the asymptotic representation (2) vy, py, ¢, are determined from the solution of
the corresponding ideal-fluid flow problem [3], and the coefficient ¢, in the expansion for the elevation of the
free boundary is obtained in the form

DL, = L*(E, 1) cos iy,

where y = (\:tanh £H) 1/2 and ¢ * ave expressedinterms of the initial data and 7.

The functions wy. = (Wxk, Wk}, which occur in the domain Dg, compensate the discrepancies in the ful-
fillment of the no-slip conditions in (1) and are determined by means of the second iteration process in {3].
For this purpose we introduce the dilation transformation z =—H + &£s and require that wj. and their deriva-
tives decrease as s — «. Then wy; =0, Wy, are determined from the heat-conduction equation with constant
coefficients, and wy, is obtained in the form

LOw, = — AV & E(0® + ) e~ L% (&, ).

The functions ¢4, 84, wy in the expansions (2) and (3) are determined by applying the first iteration pro-
cess to the conditions on the free boundary (z = 0) in Eq. (1). As a result, for ¢, and ¢; we derive the system
05,/0ty + TGy = vy, 99y/0ty + Tlgy +- ALy = 0 (z = 0),] (4)

L=, =0 (4 =0),

here th | G S X
where the operator = ﬁﬁ;'l‘ 3 5o

Separating the variables t; and 7 in (4), we obtain the function ¢* in the form
T (8, ©) = DT,e”. G

Now, eliminating ¢, from the system (4), we obtain the equation for ¢,

25 e
7@,
2

ot}

A2 V2 ap o, _y
+ y*0g, = [V‘%‘L(;I)M(Ytﬂ‘f‘ 2 -a—ticos vi + 27,‘? !sin Yt1:| t*, ()
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where

x

M(z) = cos z-¢,(}/ z) + sin z.5,() 2); ¢,(z) = ]/;—%zfcos gdE; s, (2) = }/_%‘Ysin E2dE.

0 0

From () we deduce £1- According to the multiple-scale method {4], the unknown functions w; and B4 are de-
termined from the condition that the coefficients of &, in the asymptotic expansions (2) are bounded as t — o3
as a result, we have

B, = Bt, o, = ypt, B = —AEYI2V 29V 7 ch¥(EM) .-
For the first two terms of the asymptotic expansion of the elevation of the free surface ¢ we have

L~ Lo+ €Ly, B, = cosp (1 + ef) 1. DL ™7, @)
AE® . —
b= s Y (cos v —sin ) — /2 )+ 298 (e (Vi gt — 5, (V) cos11) | @6,

We consider the case of a liquid of infinite depth. Now the last condition in the system (1) is satisfied
for z = —w, and the coefficients wy and ry_are absent in the expansions (2). The expression for the elevation
¢ of the free boundary of an ideal fluid is obtained in the form &£, =cos ¢ty * ¢ (¢, 1), where ¢ = (] £ DI/
and ¢ * is determined according to (5).

As & — 0 a boundary layer is formed only near the free boundary I'. The functions hy = My, hy) com~
pensate the discrepancy in the fulfillment of the dynamic condition for the tangential stress on I" and are de-
termined by the second iteration process, where hy =hy; =qi =0 (k = 0): Lehy, = —2A ¢ 3o? + p?)"lexpl—svo) ¢,
s =z /¢. The coefficients B, and w, in the expansions (3) are calculated concurrently with the determination
of the functions vy, ¢g, Py. We note that in the given situation vy =py = ¢4 = wy = By =0, and ¢, is determined
from the equation

@, = [ (9B, + 28%¢77) sin of, — (0, + 28%,) cos ¢, ] 7 DL,

From the condition of boundedness of the coefficients of g2 in the expansions (2) as t — « we deduce expressions
for B, and wy wy = —2¢%, By =0.

For the asymptotic expansion of the elevation of the free boundary, up to terms of order €3, we obtain

L= 5 02 @r, (cos gt + 26229 'sin ¢t) e™%dE + 0 (e?). (8)

The constructed asymptotic expansions (2) and expressions (7) and (8) describe the attenuation of the
waves generated by the initial disturbance of the free surface at times of the order O[(Re)i/ 2] and O(Re), re-
spectively. We note that the coefficient of £9 in the asymptotic formulas (8) coincides with the well-kaown in-
tegral of Sretenskii [1], and upon expansion of the exponential function exp(—2e2£ %) into a power series ine
the first two terms of the asymptotic representation of ¢ in [2] are obtained.
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